
JOURNAL OF COMPUTATIONAL PHYSICS 54, 74-86 (1984)

Stiffness and the Automatic Selection

of ODE Codes*

L. F. SHAMPINE

Applied Mathematics Research Department,
Sandia National Laboratories,’ Albuquerque, New Mexico 87185

Received June 15, 1981

The author describes the basic ideas behind the most popular methods for the numerical
solution of ordinary differential equations (ODES). He takes up the qualitative behavior of
solutions of ODES and its relation to the propagation of numerical error. Codes for ODES are
intended either for stiff problems or for non-stiff problems. The difference is explained. Users
of codes do not have the information needed to recognize stiffness. A code, DEASY, which
automatically recognizes stiffness and selects a suitable method is described.

1. INTRODUCTION

In this paper we shall first describe the basic ideas of the most popular methods for
the numerical solution of the initial value problem for a system of ordinary
differential equations (ODES). Then we shall take up the qualitative behavior of the
solutions of ODES and its relation to the propagation of numerical error. At the
present time codes for ODES are divided into those intended for non-stiff problems
and those intended for stiff problems. They are very inefftcient when applied to the
wrong type of problem. We shall try to give the reader some feeling as to what
stiffness is. It ‘is a complex matter, and unfortunately the user of a code does not have
available all the information necessary to take the best possible action. Because of the
situation, the automatic recognition and response to stiffness is an important and
active area of mathematical software research. A crude, but useful, way to select
automatically a suitable ODE code during the course of an integration will be
presented.

* This article sponsored by the U. S. Department of Energy under Contract DE-AC04-76DP00789.
t A U. S. Department of Energy Facility.

74
0021.9991184 $3.00
Copyright 0 1984 by Academic Press, Inc.
All rights of reproduction in any form reserved.

AUTOMATIC SELECTIONOFODE CODES 75

2. TYPICAL NUMERICAL METHODS

We shall be interested in solving the system of ordinary differential equations

Y’ =f(x, Y), y(a) given, a < x (6. (1)

Many quantities here and later are vectors, but there will be no need for special
notation. The popular numerical methods produce approximate solution values
y, Gy(x,) on a mesh {x,} in the interval [a, b]. They step through the interval by
proceeding from an approximation at x, to one at x,+ I =x, + h, a step of length h.
(We suppose the direction is chosen so that h > 0 for notational simplicity.)

The simplest procedure is the forward Euler method which can be derived as
follows. Suppose we have y, %;(x,,). Define the local solution u(x) to be the solution
of

u’ =f(x, u), u(x,> = Y,’

If we expand u in a Taylor series about x,, we have

where we use u’(x,) =f(x,, y,). The forward Euler method is

Y n+l =y, + w-(X,>YJ

The local error is defined in general to be

(2)

and is here

le = T u”(x,) + (3)

The forward Euler method is representative of the popular explicit Runge-Kutta
methods. A method like that of Fehlberg which is implemented in the code
RKF45 [l] of Watts and Shampine has the same form, but evaluates the equation
several times in the course of a step.

If one did the Taylor expansion about the end of the step, he would arrive at the
backward Euler formula

Y,+1 =Y, + w(x,+l~Yn+d (4)

Asymptotically, as h -+ 0, this formula has the same local error as the forward Euler
formula. There is, however, an important qualitative difference. The new solution

76 L. F. SHAMPINE

vector y, + i appears on both sides of Eq. (4) so that the formula is implicit. How one
solves these algebraic equations at each step is crucial to the use of the formula.

One way to solve (4) is to predict a solution using the explicit formula (2),

Y I’:1 =y, + wkI?Y,)

and then use simple, or functional, iteration

Y LT’=Yn + wx,+l~YF+9~ m = 1, 2,... . (5)

Here, and later, we need the important concept of a Lipschitz constant. We say the
function f(x, y) satisfies a Lipschitz condition with constant L for a < x < 6, all y if

Il”m u) -m o)ll G L IIU - u II (6)

for all u, u. If one does a Taylor expansion off,

f(X,U)--f(X,U)=J(U--),

where J is the Jacobian matrix

here evaluated at x and at unknown points between u and v, he sees that

L = sup IIJ II

is a suitable Lipschitz constant. In this form it is perhaps more easily recognized that
L measures how fast f can change with respect to the variables y. A Lipschitz
condition is normally assumed to hold when solving (1) because it guarantees a
unique solution exists, and it is fundamental to the analysis of numerical methods.
The assumption can be weakened, but there is no need to go into the matter here.

On subtracting (5) from (4) and using the Lipschitz condition (6), we arrive at

IIY n+1 -~!E’ll GhL Ily,+l -~i’-?,“l.

This says that if hL < 1, simple iteration converges. When iterated to convergence,
we have here an example of an Adams-Moulton method as implemented, e.g., in
Gear’s code DIFSUB [21. The more accurate Adams formulas involve y,- i , y,_, ,...,
but this is here irrelevant.

The iterations of (5) do not actually lead to a more accurate approximation of the
solution of the differential equation. Another possibility is to stop at a fixed number
of iterations. This is what is known as a predictor-corrector method. If we quit at
m = 2, we have here an example of an Adams-Bashforth-Moulton pair as
implemented, e.g., in the code ODE [3] of Shampine and Gordon.

For the solution of stiff problems we are, interested in step sizes h with hL * 1. It is

AUTOMATIC SELECTION OF ODE CODES 77

obviously necessary to use a different iteration. The standard one is the simplified
Newton iteration which uses an approximate Jacobian matrix J,

J+,+,,Y,+,)

in a linearization of (4):

Y !t’t,“,:” =Y, + h[f(x,+,,~!t’?,) + J(Y%‘)-y$‘$)].

In comparison with a simple iteration, this is very expensive. The matrix J must be
formed, the iteration matrix I - hJ must be decomposed into triangular factors, and a
linear system must be solved for each iteration. On the other hand, very large step
sizes h may be possible. We have here an example of the backward differentiation
formulas (BDF). The more accurate formulas involve previous values y,-, ,..., but
this is here irrelevant. The example is representative of the implementation of Gear in
DIFSUB and its modernization in the GEAR package and later LSODE, both by
Hindmarsh [4,5].

The methods of Runge-Kutta and Adams are classical, but are still among the
most effective for non-stiff problems. The backward differentiation formulas were
exploited later for the solution of stiff problems when these problems were recognized
as a special class for which the classical methods were impractical. The BDF are
certainly the most popular today for the solution of stiff problems. For later reference
we mention here the software package DEPAC [6] which includes a Runge-Kutta
code DERKF built upon RKF45, an Adams-Bashforth-Moulton code DEABM built
upon ODE, and a backward differentiation formula code DEBDF built upon
LSODE.

3. ERROR PROPAGATION

The stability of the differential equation problem itself is crucial to its numerical
solution. A classical result from the theory of ODES states that if u(x), V(X) are
solutions of (l), then

II W - 4dl G ew(W - 4) II 44 - 44ll (7)

for x > a. This bound tells us how fast solutions can spread apart in terms of the
Lipschitz constant and the distance involved. It poses a fundamental limit on the
accuracy possible for numerical solution. We start integrating (1) with the exact
initial value y,, = y(a). On stepping to a + h we approximate y(u + h) by yi. If no
further error is made in the remainder of the integration, the result at b could be in
error by as much as exp(L(b -a - h)) I(y, - y(a + h)]l. If L(b - a) is large, this is a
very serious limitation.

78 L. F. SHAMPINE

The bound (7) is sharp but is almost always completely unrealistic. This is because
it must account for problems with solutions diverging as fast as possible. Normally
we do not solve unstable problems. The typical behavior is that solution curves
spread and come together so that the net result is that the problem is moderately
stable.

There is a corresponding concept of the stability of a numerical formula. When
applied to a problem (1) satisfying a Lipschitz condition, do the numerical solutions
diverge? One establishes results like

where {u”} is the result of the formula applied to Eq. (1) with initial value u,, and
(on} is similarly defined. More is needed. We must be able to assert the existence of a
constant K in (8) which holds uniformly for all sufficiently small step sizes in order
to establish convergence. There is a body of analytical techniques for proving such
asymptotic stability results.

For simplicity we have described stability in (7) and (8) with respect to pertur-
bation of initial conditions only. We must also establish it with respect to pertur-
bations of the equation. In addition the formula must in a reasonable way approx-
imate the differential equation; the local error defined in Section 2 must tend to zero
as the step size does. Putting all these aspects together one can establish a
convergence result as follows for Euler’s method (forward or backward) with
constant step size h:

M,h
IIYW-Ynll G2 (

exp(L(x, - a)) - 1
L)

3

where

The exponential term arises from stability considerations. The first term arises from
the local error (3) divided by h. Basically it comes from the facts that an error like
(3) is made at each step and there are (b - a)/h steps.

In practice the step size is adjusted at every step so that the local error is no more
than a given tolerance a. This is to be achieved with the largest step size h possible.
Then, e.g.,

exp(L(x, - a)) - 1 Ily(x.)-Y.11 GE (L).
In later sections these expressions will provide useful insight.

AUTOMATIC SELECTIONOFODE CODES 79

4. WHAT Is STIFFNESS?

We feel that it is important to distinguish between the theoretical and practical
definitions of stiffness. The pmcticul definition of stiffness is the historical one: If
codes based on the classical methods of Runge-Kutta and Adams are much more
expensive than those based on the BDF, the problem is stiff. In view of the fact that
the classical methods are very much cheaper per step than the BDF, the question
boils down to asking, when might the BDF use a much larger step size? In this
section we shall consider what determines the step size that a modern code can use.

The example methods outlined in Section 2 all have the same local error
asymptotically. If the accuracy request determines the step size, the problem cannot
be stiff. Generally speaking, the more accuracy one asks for, the less stiff a problem
will appear.

A simple example will prove illuminating. Consider the solution of the single
equation y’ = 13;v with II < -1. The solution for x > 0 is y(x) = exp@x) y(O). For the
example formulas,

If one tries to control the error in an absolute sense, 1 le 1 < E, we see that for small x,
u”(x) is large and a small step size is needed to resolve the boundary layer. However,
as the integration proceeds, v”(x) tends to 0 exponentially fast so that the accuracy
requirement falls away and extremely large h are feasible. If one imposes a relative
error control,

the situation is completely different-the step size is restricted on grounds of
accuracy for all x. Evidently then, stiffness depends on the nature of the error control.

We have seen that it is possible to encounter problems for which accuracy can be
achieved with very large h. Is this at all likely? Consider problems of the form

Y’ = JY + g(x), (9)

where J is a constant matrix. Any two solutions u, u of (9) satisfy (U - u)’ = J(u - v).
Suppose J is similar to a diagonal matrix of its eigenvalues lli (in general, complex
numbers):

TJT-’ = D = diag {Ai).

The change of variables z = T(u - V) leads to

z’=Dz or {z; = Liz,}.

80 L. F. SHAMPINE

Uncoupled like this, we see that the solution curves u and v approach one another if
Re(A!) < 0 for all the eigenvalues Li.

This familiar stability analysis will be applied later to the corresponding numerical
procedure. What it says now is that all solutions y(x) converge to a particular
solution u(x), and their derivatives y”‘(x) converge to the u(‘)(x) too. If u(x) is
smooth, then accuracy may not dominate in the choice of the step size for integrating
it. If it does not, this will be true of all solutions y(x). When some lzi is “large,” there
will be a period of rapid change- an initial transient or boundary layer-as y(x)
approaches u(x). There the problem is not stiff, but eventually the integration does
become stiff. Notice that what “smooth” means depends very much on the particular
numerical method employed.

This analysis is applied to the general problem y’ =f(x,~) locally by considering
the approximating problem at (x,, y,):

The eigenvalues of the local Jacobian aflay tell us something about the stability of
the original problem. This heuristic analysis is useful, but it should not be taken too
seriously. As usual with a local linearization, certain phenomena are not revealed in
the model equation.

Experience has shown that it is very common that the local linearization be stable,
indeed super stable. It is by no means unusual to encounter eigenvalues Izi with
Re(L,) < - 1 0”. This is not some artifact of the mathematics, it simply reflects the
stability of the physical processes being modeled, and the lli show the time scales on
which the various processes can evolve.

Now that we have seen how it can happen that the restriction on the step size due
to accuracy can be weak, we ask, what else can restrict h? One possibility is output.
When we described solution methods in Section 2, we implicitly assumed that
answers at mesh points selected by the code would suffice. This often not the case.
People want answers at specific x and may want a lot of answers, e.g., in plotting.
One possibility is to adjust the step so as to place a mesh point at every desired
output point. This can severely affect the efficiency of those methods for solving
differential equations which do a lot of work for each step. Other methods are able to
interpolate on the mesh and so produce output values cheaply with little impact on
the cost of integration. The typical Adams and BDF codes are examples. One must
be alert to the fact that where and how frequently he wants answers may affect the
stiffness.

A related issue is the length of the interval of integration. If a few steps with a
Runge-Kutta code suffice for the whole interval, it matters not at all that a BDF
code could use an enormously larger step size.

The iteration method implemented in a code plays an important role. When the
backward Euler formula is evaluated by simple iteration, the step size must satisfy
hL < 1. When L is large, this can be a very severe restriction. Recalling the

AUTOMATIC SELECTION OF ODE CODES 81

relationship between L and the Jacobian matrix and using the general result that
1 Ai1 < J(JII for any eigenvalue 1, of J, we see that /h&l < 1 is necessary. This
restriction holds quite independently of the smoothness of the solution. As we saw
with the model problems (9), this consideration might well be an extremely severe
restriction. The predictor-corrector form has a similar restriction which is manifested
in another way. Of course, with the simplified Newton scheme this kind of restriction
does not arise. The point here is that how a formula is implemented in a code may
profoundly affect the step size possible.

Let us now take up the stability of the numerical method when applied to those
problems of the form (9) which are stable. The same method of analysis applies to all
the standard numerical methods. Changing variables shows that the forward Euler
method applied to z’ = Dz is uncoupled just as the differential equations are, and for
equation i, the formula is

zn+l,i- - z,,i + h3LiZ,,i*

Here we find that the difference vector z grows unless 11 + h& < 1. The stability
region for this method is the disc S = {M I 1 + Ml (1). The integration is stable
only if hli E S for all eigenvalues li of the Jacobian J. A similar analysis for the
backward Euler method leads to

Z - z,,i + hAiZ,+ 1 ia n+l,i-

One finds that

for all hA with Re(1) < 0. Thus whenever the differential equation (9) is stable, this
numerical method is too.

In this way all the standard numerical methods have associated with them stability
regions S such that hA, E S is necessary for stability of the method, where li is any
eigenvalue of the local Jacobian with Re(Ai) < 0. The classical methods of
Runge-Kutta and Adams all have finite stability regions. Ideally we would have the
whole left half complex plane as a stability region, like the backward Euler formula
has. Unfortunately it is hard to achieve this with efficient formulas. In particular,
although the more accurate BDF have infinite stability regions, they do have “holes”
where they are not stable.

Whether or not a stability restriction is present depends on the formula used and
details of the problem, specifically the behavior of the eigenvalues of the Jacobian. A
problem can suffer a severe stability restriction with a good formula, for example, the
fifth order BDF, and none at all with another, e.g., the fourth order BDF.

In conclusion we have seen that stiffness in a practical sense depends on the details
of the mathematical problem, the computational problem, the numerical method, and
the implementation of the numerical method. Furthermore, the type can change as the

82 L. F. SHAMPINE

integration proceeds. The usual description of a problem as “stiff’ means only that if
one chooses to solve the whole problem with a single code, he is better off to use one
based on BDF than on Runge-Kutta or Adams methods. Almost always there are
boundary layers present which are better handled by the classical methods.

5. AUTOMATIC SELECTION OF CODE

In this section we shall describe a crude, but useful, technique for the automatic
selection of code. With the assistance of Baca, the author has written a code DEASY
for this purpose. It fits into the DEPAC software package referenced in Section 2. Its
basic task is to monitor the integration and to select the Runge-Kutta code DERKF
or the BDF code DEBDF, whichever is the more appropriate. It is presumed that any
user of DEASY does not want to concern himself with the technical details of the
numerical solution. For this reason DEASY uses DEBDF in a mode generating a
dense Jacobian by numerical differencing internally.

Any automatic scheme must predict the behavior of the integration in the future
based on what has been observed up to the current point. The problem can, and often
does, change character. Thus we must reconsider the decision as to the best method
as often as practical, depending on the cost of the decision and the cost of changing
methods.

We propose selecting the code according to the Lipschitz constant L. The
integration is always started with the Runge-Kutta code DERKF. If the integration
is at x and is to continue to b, a switch from DERKF to DEBDF is made if
L(b -x) > 300. A switch from DEBDF to DERKF is made if L(b -x) < 100. No
switch is permitted if it is estimated that no more than 15 steps remain in the
integration.

Supposing that this program is feasible, are we doing the “right” thing? We believe
it is important that the first few steps be small enough to resolve any solution curve,
so as to recognize the scale of the problem. When possible, the step size will be
increased rapidly thereafter. This done most efficiently with a one-step method like
that of DERKF. Also, if the problem is not stiff, DEBDF will never be called and the
expensive approximation of a Jacobian will be completely avoided. If L is “small”
compared to the interval of integration, it is clear that the Runge-Kutta code is the
more efficient. If L is “large,” the situation is not so clear. It might be large because
the differential equation is stable or unstable. If the differential equation is stable, it is
best to use DEBDF, although we have noted a good many other reasons why the step
size might also be restricted. If the problem is unstable, it is not clear which code is
best. This is a matter which has seen little attention. High order would be useful, but
this does not separate these particular codes. It is at least plausible that the additional
information furnished by the Jacobian might allow DEBDF to do better. Experience
does not separate the codes either. Our choice here seems adequate. Fortunately one
is not asked to solve problems which are unstable for long intervals.

Our proviso that we not switch unless more than 15 steps remain is a natural one

AUTOMATIC SELECTION OF ODE CODES 83

in any case, but it leads into another issue. How do we adjust the step size when
switching methods? It is possible to do something sophisticated relating the methods,
but we did not consider it worth the trouble. All the codes in DEPAC automatically
select an initial step size. The user can limit it if he wishes, and we did limit it by the
step size being used currently by the other method. Otherwise, we simply relied on
the automatic start. Naturally we need to give the codes a reasonable number of steps
to get going. Our decision to proceed in this simple way is in part justified by our
belief that the type changes infrequently.

In DERKF we compute a large lower bound for L. To do this we evaluate f at
most live times. By checking every 15 attempted steps, the cost is held to no more
than a 5 % increase in function evaluations. The bound is obtained by the use of a
non-linear power method. When the code has reached x,, it has y,, = y”’ and
f (x, , y,) =f ‘O’. We define y “’ by

Y (1) -Y (0) =’ (0)
PO

s 3

where the scalar p. is chosen to make the difference y”’ -y(O) small. For m = 1, 2,...
define

“Pm) =f(x,,Y(m)),
llPrn) -f(O) II

pm =)I ycm) _ y’o’ll ’

. (11)
Y (mtl) -Y (0) = $ (f cm) -f NV).

m

Notice that the definition of p, makes 11 Y(~+‘) - yco)JI =)I ycm) - ~“‘1) = .a* =
)I y(l) - ~“‘(1. By definition of a Lipschitz constant, pm <L for each m. If we do a
Taylor expansion off in (1 1), we find

Y cm+ 1) -Y (0) = +J,p’ - y’o’),
m

where J,,, is the Jacobian evaluated at x, and at points along the line between y(“‘) and
y(O). By virtue of keeping ycm) close to y(O), we can approximate J,,, A J to see what is
happening. Then

(mtl) (m) &
1

Y -Y
PmPm-1 .** PO

J’YY (1) _ y’o’)*

This is the power method applied to computing the largest eigenvalue of J. It is
known that pm + p(J), the magnitude of the largest eigenvalue of J, if the eigenvalue is
not complex.

A different view is obtained when we choose a norm. In the Euclidean vector
norm, a simple computation shows that pi is a Rayleigh quotient for the largest

84 L. F. SHAMPINE

TABLE I

Comparison of Automatic Selection of Code on a Set of
Non-stiff Problems to a Code Intended for Such Problems

Absolute
Tolerance

DERKF DEASY

FCN CP FCN CP

10-r 4010 1.40 4150 1.44
10-4 5589 1.85 5804 1.90
10-r 7912 2.42 8247 2.59
10-6 11324 3.30 11859 3.58

eigenvalue of Ji J,,, which is just 11 J, 11:. For this reason we can expect max p, to be a
large lower bound.

For more details about this process the reader can consult [7]. At most five
iterations are allowed in DEASY. If the problem has a Lipschitz constant large
enough to cause a switch, in our experience it is revealed in one or two iterations.
Thus we can often quit early to hold down the cost.

To go in the reverse direction is easier. In DEBDF an approximate Jacobian J is
actually formed from time to time. The only difficulty is that we want an upper
bound and llJllz is not practical to compute. We actually use

llJllz<llJll~= (;J:)1’2
9’

which is readily available. Again it is possible to interrupt the computation of the
bound when we see that a switch cannot occur and so reduce the overhead.

Some numerical examples will illustrate that the convenient code DEASY is quite
useful. Hull et al. [8] assembled a set of 25 non-stiff test problems. In Table I we
report the cost of solution of all the problems, except D5, in terms of the number of

TABLE II

Comparison of Automatic Selection of Code on a Problem
with Unstable Regions to a Runge-Kutta Code

Absolute
tolerance

DERKF DEASY

FCN CP FCN CP

10-3 564 0.146 682 0.327
10-4 804 0.214 1015 0.563
1o-5 1156 0.298 1389 0.745
1O-6 1711 0.43 1 1883 1.066

AUTOMATIC SELECTION OFODE CODES 85

TABLE III

Comparison of Automatic Selection of Code on a Set of
Stiff Problems to a Code Intended for Such Problems

Absolute
tolerance

DEBDF DEASY

FCN CP FCN CP

10-r 7234 9.904 1662 9.101
1o-4 8628 11.875 9602 12.551
1o-5 10094 13.710 11185 14.573
1o-6 12304 17.109 12655 16.913

function evaluations FCN and central processor time CP on a CDC6600. The
absolute error tolerance is the same for all components of the systems.

DEASY found that none of these problems had a large Lipschitz constant and
correctly chose to integrate with DERKF internally. It did say that D5 has a large
Lipschitz constant, which is also correct. This is a problem of two bodies in elliptic
motion. At the initial data the eigenvalues of the Jacobian are f m, f im,
and (]JI(, = 2000. The interval is [0,20]. The problem is unstable at the initial point
x = 0 and also near 6.5 and 12.7. DEASY uses the BDF code near these points. The
results are displayed in Table II. As we have noted, which code is best in a region of
instability is not clear. In this instance using the BDF code was acceptable but not
optimal.

Enright et al. [9] have collected a set of 25 stiff problems. We integrated them
except for B2, B3, E2 and E4. As explained in detail in [lo], the first three listed are
not stiff and E4 is poorly posed. The test set [S] accounts for non-stiff problems, so
B2, B3 and E2 were not included here. The code DEBDF (not, however, DEASY)
gives anomalous results with E4, so it was not included. The results are displayed in
Table III.

These numerical results show that even a crude automatic selection of a code can
enable a user to ignore the technical details of solution, yet still solve problems effec-
tively. The additional cost of this convenience is modest.

REFERENCES

1. L. F. SHAMPINE AND H. A. WATTS, Sandia National Laboratories Report SAND76-0585, 1976.
2. C. W. GEAR, “Numerical Initial Value Problems in Ordinary Differential Equations,” Prentice-Hall,

Englewood Cliffs, N.J., 1971.
3. L. F. SHAMPINE AND M. K. GORDON, “Computer Solution of Ordinary Differential Equations: the

Initial Value Problem,” Freeman and Co., San Francisco, 1975.
4. A. C. HINDMARSH, Lawrence Livermore Laboratory Report UCID-30001, rev. 3, 1974.

86 L. F. SHAMPINE

5. A. C. HINDMARSH, SIGNUM Newsletter 15 (1980), 10-l 1.
6. L. F. SHAMPINE AND H. A. WATTS, Sandia National Laboratories Report SAND79-2374, 1980.
7. L. F. SHAMPINE, in “Computational Methods in Nonlinear Mechanics” (J. T. Oden, Ed.), Chap. 19,

North-Holland, Amsterdam, 1980.
8. T. E. HULL et al., SIAM .I. Numer. Anal. 9 (1972), 603-637.
9. W. H. ENRIGHT et al., BIT 15 (1975), 10-48.

10. L. F. SHAMPINE, Sandia National Laboratories Report SAND80-2772, 1980.

